
1

Codenames as a Benchmark for Large Language
Models

Matthew Stephenson, Matthew Sidji, and Benoı̂t Ronval

Abstract—In this paper, we propose the use of the popular
word-based board game Codenames as a suitable benchmark for
evaluating the reasoning capabilities of Large Language Models
(LLMs). Codenames presents a highly interesting challenge for
achieving successful AI performance, requiring both a sophisti-
cated understanding of language, theory of mind, and epistemic
reasoning capabilities. Prior attempts to develop agents for
Codenames have largely relied on word embedding techniques,
which have a limited vocabulary range and perform poorly
when paired with differing approaches. LLMs have demonstrated
enhanced reasoning and comprehension capabilities for language-
based tasks, but can still suffer in lateral thinking challenges.
We evaluate the capabilities of several state-of-the-art LLMs,
including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama
3.1, across a variety of board setups. Our results indicate that
while certain LLMs perform better than others overall, different
models exhibit varying emergent behaviours during gameplay
and excel at specific roles. We also evaluate the performance
of different combinations of LLMs when playing cooperatively
together, demonstrating that LLM agents are more generalisable
to a wider range of teammates than prior techniques.

Index Terms—Codenames, Large Language Models, Game
Playing Agents, AI Benchmarks.

I. INTRODUCTION

IN recent years, Large Language Models (LLMs) have seen
rapid advancement, adoption and experimentation across

a wide range of research fields [1]. Games are no excep-
tion to this, with many researchers attempting to utilise this
new technology for novel game playing and content creation
applications [2], [3]. The emergent reasoning capabilities of
LLMs, as demonstrated across various cognitive and symbolic
tasks, has led to further investigations into the abilities of
LLMs to not only enhance the in-game experience, but also
to play games autonomously [4], [5], [6], [7], [8]. However,
the complex spatial reasoning and strategic planning aspects
of most traditional board and video games are known to be
particularly challenging for LLMs [9].

In contrast to pure strategy games such as Chess or Go that
have been used as AI benchmarks [10], [11], the language cen-
tred nature of LLMs make them much more suited to games
that utilise natural language as part of the core gameplay.
Many modern multi-player games permit natural language
conversations between players as a means to discuss strategies

Matthew Stephenson is with the College of Science and Engi-
neering, Flinders University, Adelaide, SA 5042, Australia (e-mail:
matthew.stephenson@flinders.edu.au).

Matthew Sidji is with Faculty of Engineering and IT, Uni-
versity of Melbourne, Melbourne, VIC 3000, Australia (e-mail:
matthew.sidji@unimelb.edu.au).

Benoı̂t Ronval is with the ICTEAM, UCLouvain, Louvain-la-Neuve, Bel-
gium (e-mail: benoit.ronval@uclouvain.be).

or form alliances, but this aspect is often not considered by
traditional AI agents [12]. LLMs offer a new approach to
developing agents for language-based games, as well as games
where players can benefit from being able to communicate
with each other.

To explore the potential of LLMs for language-based games,
we have selected the board game Codenames (Czech Games
Edition, 2015) as our benchmark [13]. Codenames is a popular
team-based party game that requires cooperation, natural lan-
guage understanding, and epistemic reasoning abilities to play
effectively. Players work in asymmetric two-person teams,
where one player (codemaster) provides a single word clue that
attempts to link a variety of other words together. The second
player (guesser) must then select from a board of several
possible words, those which they feel are most associated with
the provided clue. The full rules for playing Codenames are
described in Section II, for any readers who are unfamiliar
with this game.

A simplified version of Codenames was previously utilised
for a short-lived AI competition in 2019, that focused on
developing more traditional natural language processing tech-
niques (such as semantic word associations) [14]. While
these approaches performed well when playing with another
agent using the same word association strategy, they perform
significantly worse when paired with a teammate utilising an
alternative technique [15]. LLMs may provide a solution to
this problem, demonstrating emergent natural-language and
theory of mind reasoning capabilities across a wide range of
prior domains [16].

In this paper, we present an updated version of the Co-
denames AI framework that replicates the full rules of the
original board game. We then benchmark the performance of
several state-of-the-art LLMs, as well as the more traditional
word-vector approaches, to play Codenames alongside a va-
riety of teammates and opponents. This evaluation explores
whether LLMs are inherently able to understand the rules of
the game provided to them, along with their ability to provide
meaningful and generalisable clues that work for a range
of potential teammates. Our results demonstrate that, while
current LLMs are not able to outperform more traditional
NLP agents when cooperating with an identical technique,
their performance is significantly less hindered when paired
with other agents. It is also apparent that each of the LLMs
tested have a different emergent playstyle, with some playing
more cautiously or risky than others, leading to interesting
result combinations when paired together. We also provide
preliminary results for OpenAI’s recent o1-preview model,
which demonstrated a significant performance improvement

2

over other LLMs.
The remainder of this paper is organised as follows: Section

II details the complete rules for Codenames, along with the
differences between the previous and updated version of the
Codenames AI framework. Section III covers related work,
including alternative LLM benchmarks, the reasoning skills
required to play Codenames effectively, and the previous
AI approaches for this game. Section IV provides details
on the experimental analysis used to evaluate the game-
playing abilities of several state-of-the-art LLMs for different
versions of Codenames. Section V presents the results of these
experiments for both LLMs and word-vector agents. Section
VI discusses the implications of our quantitative results, along
with qualitative observations and potential limitations. Section
VII describes pathways for future research, with Section VIII
providing the final conclusion.

II. CODENAMES AI FRAMEWORK

Before discussing related work, we will first explain our
updated Codenames AI framework. One of the contributions
of this research is that the previous Codenames AI framework
has been extended to replicate the full game rules, along with
support for LLM controlled agents. This section describes the
rules of Codenames for readers who are unfamiliar with it,
along with the necessary changes made to the Codenames AI
framework to support the complete game ruleset. The updated
framework code is available, alongside our presented results,
at the following repository.1

A. Codenames Rules

The following four sub-sections describe the complete rules
for Codenames. For additional clarification, Figure 1 shows an
example board setup from the codemaster’s perspective. The
guesser is presented the same board but with the identities
(i.e., colours) of the words hidden.

1) Overview: Codenames is a word-based game of lan-
guage understanding and communication. Players are split into
two teams (red and blue), with each team consisting of a
Codemaster and Guesser. The red team always goes first.

2) Setup: At the start of the game, the board consists of 25
English words. The Codemaster on each team has access to a
hidden map that tells them the identity of all of the words (Red,
Blue, Civilian or Assassin). A standard map in Codenames has
9 red words, 8 blue words, 7 civilian words and 1 assassin
word. The Guessers on each team do not have access to this
map, and so do not know the identity of any words. Players
need to work as a team to select all their words in as few
turns as possible, while minimising the number of incorrect
guesses.

3) Turns: At the start of each team’s turn, the Codemaster
supplies a clue and a number (the number of words related to
that clue). The clue must:

• Be semantically related to the words the Codemaster
wants their Guesser to guess.

• Be a single English word.

1https://github.com/stepmat/Codenames GPT/tree/ToG 2025

SINK POOL KNIFE ALPS CONTRACT
CAR PLATE TRUNK WORM RULER
BELT CHINA PARACHUTE FIGHTER SPELL
PRESS LION JAM MAPLE BEACH
CHICK MOUTH EMBASSY LEMON SCHOOL

Fig. 1. Codenames example board setup (seed = 0). Words associated with
each team are shown in red or blue, civilian words are shown in grey, and
the assassin word is shown in purple.

• Not derive, or be derived from, one of the words on the
board.

The clue number must be greater than or equal to zero. The
Guesser then selects from the remaining words on the board,
based on which word is most associated with the Codemaster’s
clue. The identity of the selected word is then revealed to all
players. If the Guesser selected a word that is their team’s
colour, then they may get to select another word. The Guesser
must always make at least one guess each turn, and can
guess up to one word more than the number provided in
the Codemaster’s clue. The only exception to this is if the
Codemaster’s clue number is zero, then there is no limit on
the maximum number of guesses. If a Guesser selects a word
that is not their team’s colour, their turn ends. The Guesser
can choose to stop selecting words (ending their turn) any time
after the first guess.

4) Ending: Play proceeds, passing back and forth, until one
of two outcomes is achieved:

• All of the words of a team’s colour have been selected
(this team wins).

• A team’s guesser selects the assassin word (this team
loses).

B. Differences from Previous Framework

The previous Codenames AI framework provided a simpli-
fied version of the above rules, which differs from the full
game in two key aspects:

Firstly, the previous framework provided a single team
cooperative version of the game, where only the red team
gives clues and makes guesses. The red team is then scored
at the end of the game based on the number of turns needed
to select all red words (i.e., a lower score is better) with a
loss resulting in a maximum score of 25 points. This rule
simplification makes it easier to evaluate a single team of
agents without needing to worry about the opposing team,
but also removes some of the game’s deductive and strategic
reasoning elements. Blue and civilian words function almost
identically in this single team version, with the only difference
being that the red team loses if they somehow select all
blue words (which essentially never happens). This lowers
the potential impact that incorrect word selections have on
a team’s chance of winning, and reduces the game’s overall
strategic depth. Team’s being given the maximum score of
25 points if they lose also means that selecting the assassin
word can have a huge impact on a team’s average overall
performance, and thus incentives slow and cautious strategies.
Our revised framework provides the option for both the single
team (previous framework) and two teams (full rules) versions
of Codenames.

https://github.com/stepmat/Codenames_GPT/tree/ToG_2025

3

Secondly, the previous framework did not permit the guesser
to deviate from the number of guesses specified in the
codemaster’s clue. The original Codenames rules state that,
assuming that an incorrect word is not selected, the guesser
can select any number of words between one and one more
than the number of guesses specified by the codemaster (e.g.,
if the codemaster’s clue specifies the number three, then the
guesser can select a minimum of one and a maximum of four
words). The codemaster is also able to provide a clue number
of zero, which allows the guesser to make as many guesses as
they like (although this almost never happens in regular play).
Our updated framework allows the guesser to stop guessing
after each word selection, up to one more than the clue number
provided by the codemaster. This provides another interesting
strategic choice for the guesser, allowing them to stop early if
they are unsure what word to select next or stop late if they
wish to make a risky extra guess.

C. Framework Limitations

Despite our best attempts to adhere to the full Codenames
rules described above, there are still some remaining ambigui-
ties that need to be addressed. Firstly, the rules of Codenames
state the the provided clue cannot derive, or be derived from,
one of the words on the board. What exactly counts as a
derivative word is a subjective decision, and thus cannot be
easily defined in our framework. In the official rulebook for
Codenames, this invalid clue rule extends to include compound
words or non-English words, using the clue number as an
additional hint, and providing clues that do not relate to the
meaning of words. These requirements are hard to define
objectively, and have thus been excluded from our framework.
The only restriction we enforce is that clues cannot contain
or be contained within any of the words still available on
the board (i.e., no substrings allowed). This does mean that
agents could effectively “cheat” by subverting this rule (such
as deliberately misspelling words) although this is unlikely to
occur without deliberate human influence.

Another rule from the original Codenames game relates to
the penalty for invalid clues. In the official rulebook, if the
codemaster gives an invalid clue their turn ends immediately
and the other team’s codemaster gets to identify one of their
team’s words for free. However, the imperfect nature of LLMs
means that they have an increased risk of providing a clue
in an invalid format (such as providing additional text in
their response). We therefore decided to relax this rule, and
instead simply ask the codemaster to try again if their original
response was invalid. However, If the codemaster fails to
provide a valid clue 10 times in a row, then a default empty
string is chosen as the clue with the clue number being set to
1. Likewise, if the guesser fails to guess a valid word on the
board 10 times in a row, then one of the remaining words is
chosen at random. During our experiments, no codemaster ever
failed to give a valid clue within this defined limit. However,
the guesser agent would very occasionally fall into a repeated
loop of providing a response that wasn’t on the board and
would eventually have a word selected at random (although
this happened only a handful of times across all experiments).

While this modification provides a more lenient version of the
game’s rules, it is important to highlight that the creation of
LLMs that can accurately adhere to their provided prompts
is a strict requirement of reliable AI. Future versions of this
benchmark may choose to remove this modification in order
to emphasise this rule following aspect of LLM evaluation.

III. RELATED WORK

In this section, we discuss alternative benchmarks that have
previously been used to evaluate the performance of LLMs,
and why we feel that Codenames is a novel and suitable
benchmark alternative. We also present some of the previous
approaches to developing AI approaches for Codenames.

A. Benchmarks for LLMs
With the ever growing number of LLMs being released

every month, being able to empirically evaluate their per-
formance has become an increasingly critical challenge. To
understand how good these models are across different do-
mains and applications, researchers often rely on multiple
benchmarks that focus on different LLM capabilities or tasks.

One of the most popular benchmarks for evaluating the
general knowledge and language understanding of LLMs
is the Massive Multitask Language Understanding (MMLU)
test [17]. This benchmark contains numerous multiple-choice
questions grouped into 57 individual topics, that LLMs are
required to interpret and answer correctly. Other benchmarks
such as HellaSwag [18] or BIG-Bench Hard (BBH) [19]
also focus on language comprehension, but additionally assess
general and common-sense reasoning abilities [20]. For Hel-
laSwag, given the start of the sentence, the LLM must select
the logical completion among different available choices. BBH
considers 23 task groups, each consisting of several examples,
that have been identified as especially challenging LLMs.

As a subcategory of reasoning, LLMs can also be evaluated
on their strategic capabilities [21]. This ranges from their
playing skill for different types of games (conversational,
board, card, or electronic games) to societal and economic
simulations. One of the key aspects for this type of evaluation
is the presence of at least one other agent that can influence
the environment, which thus affects the decisions made by the
LLM. Beyond evaluating general reasoning or text generation,
benchmarks have also been proposed to assess the capabilities
of LLMs for specific tasks or scenarios. TyDi QA [22] is an-
other benchmark consisting of questions and expected answers
but presented in a variety of world languages, intended to
evaluate the multilingual abilities of LLMs. Another example
of a precise domain benchmark is the MATH test set [23],
which (as the name would imply) assesses LLM performance
on different mathematical problems.

This section has covered only a handful of the many LLM
benchmarks that currently exist, however it is apparent that
few of them evaluate more abstract language understanding
and reasoning capabilities of LLMs outside of knowledge
assessment. We propose that the use of Codenames as an
LLM benchmark allows for the simultaneous assessment of
language understanding, strategic reasoning, and theory of
mind capabilities.

4

B. Reasoning Skills in Codenames

In this section, we highlight some of the the important rea-
soning skills required to play Codenames effectively, and why
this makes it a novel and effective benchmark for evaluating
LLMs.

The first type of reasoning is that of language or word under-
standing. We further distinguish this into inductive reasoning
for the codemaster and deductive reasoning for the guesser.
We designate the generation of a clue by the codemaster as
inductive reasoning, as it requires forming a general concept
(the clue) from specific provided examples (the words on the
board). This can also be seen as an optimisation problem,
where the codemaster has to find a clue related to the largest
number of their team’s words, while also avoiding associations
with any other non-team words. In contrast, the guesser has
to demonstrate deductive reasoning to identify specific words
on the board based on their association with the provided
clue. Demonstrating robust inductive and deductive reasoning
remains a challenging task for LLMs, although recent works
involving prompt engineering are encouraging and show the
need for benchmarks that evaluate this capability [24], [25],
[26].

The second type of reasoning present in Codenames is
strategic reasoning. The codemaster may decide to give a more
risky or cautious clue to the guesser, commonly exemplified
as the number associated with the clue word. A higher clue
number would allow the guesser to select more words, but
can also increase the risk of them selecting one of the words
for the other team (or even the assassin word). The guesser
may also make strategic decisions, by deciding whether to
stop guessing early when unsure of the next word, stopping
at the number specified by the codemaster, or making an
extra guess. The decision whether to play risky or cautious
should ideally depend on the current state of the game, as
a team that is further ahead than the opposing team can
afford to play safer, while a team that is behind or close to
losing make choose to go for a “Hail Mary” final attempt. We
should expect intelligent players to take all these factors into
account when making their decisions and adapt to changes
in relative team performance throughout the game. Recent
research has indicated that LLMs may possess the capability
for generalisable strategic reasoning in simple test cases,
indicating their potential suitability for Codenames [27].

Lastly, Codenames also requires cooperative and epistemic
reasoning. Both the codemaster and the guesser have to play
with each other in order to win, despite not being able to
communicate outside of their defined actions. These Partial
Information, Restricted Communication, Cooperative (PIRCC)
games have recently garnered interest in the AI literature due
to the complexity of creating capable AI players, and humans’
current superior performance to many AI [28]. To perform
in these settings effectively, each agent needs to internalise
how their teammate, and to a lesser extent the opposing team,
may interpret their actions (i.e., what is their current mental
model). To perform better at the game, this reasoning needs
to be applied when inducing suitable clues (codemaster) and
deducing words on the board (guesser). This reasoning also

allows players to adapt their strategy and playstyle based on
the performance and actions of their teammate. For example,
a player may give a clue about medieval history because
their teammate is knowledgeable on the subject, or a highly
skilled codemaster may need to reduce their clue complexity
when paired with a novice guesser. LLMs may be able to use
this type of reasoning to play Codenames better than other
more traditional agents, having previously demonstrated some
theory of mind capabilities [16], [29], although there remains
debate over whether this reflects true possession of a theory
of mind [24], [25].

Based on the multiple interconnected reasoning capabilities
involved in playing Codenames, we believe that this game
provides a complex and nuanced task that assesses multiple
facets of cognitive intelligence.

C. Codenames AI

There is growing interest in the game Codenames from
AI research due to its demand for multi-modal language
understanding, asymmetric cooperation, theory of mind, and
epistemic reasoning [15]. Introduced by Kim et al. (2019) the
first Codenames AI competition employed word embedding
techniques such as word2vec and GloVe models. These models
achieved 100% accuracy when paired with themselves as
teammates, but saw a drop in performance when working with
teammates using different models. As an extension of this
work Jaramillo et al. (2020) utilised term frequency - inverse
document frequency (TF-IDF), Naive-Bayes, and the GPT-2
Transformer models. They report that the transformer model
achieved the same or better accuracy compared to agents
developed by Kim et al. (2019). When tested with human
participants, the transformer model was preferred over other
agents [30].

Koyyalagunta et al. (2021) developed multiple methods
to improve Codenames AI performance when paired with
humans. Their aims was to create agents that produce more
human-interpretable clues, as previous agents would often give
clues that were nonsensical to human guessers but would be
correctly guessed when paired with another word embedding
agent [31]. Other researchers have focused on agents with the
ability to adapt in real time to their teammates. Archibald et
al. (2024) created the Adaptive Codenames Ensemble (ACE)
which changes the Codenames agent it produces clues with
based on the teammates guesses [32]. Archibald et al. (2024)
also proposed a Noisy Communication Model (NCM) which
deliberately adds “noise” to a clue in order to increase it’s
generalisability to unknown teammates [33].

Prompting techniques for LLMs have also been used to
improve Codenames AI performance. Ozturkler et al. (2023)
use ThinkSum, a prompting technique used to promote de-
ductive reasoning, to improve Codenames guesser agents.
They showed a 20% improvement in score compared to few-
shot prompting for guesser agents [34]. Most recently, Sidji
et al. (2024) compared the performance of various prompt
engineering approaches on Codenames using OpenAI’s GPT-
4-1106 as the base LLM. This included prompting techniques
such as Chain of Thought [35], Self Refine [36], and Solo

5

Performance [37], [26]. While these prompting techniques
had a measurable impact on the agent’s playstyle, typically
resulting in more risky or cautious clues, none of them were
able to produce a significant improvement to overall per-
formance. Rather than exploring the effectiveness of prompt
engineering techniques, our presented research instead aims to
explore the inherent abilities of different state-of-the-art LLMs
to play Codenames effectively when paired with or against
other alternative models.

IV. EXPERIMENTS

This section describes the selected AI agents, Codenames
game versions, and evaluation process carried out using our
updated Codenames AI framework. The primary purpose of
these experiments was to determine the current performance
of state-of-the-art LLMs for playing Codenames, compared to
traditional word-vector approaches.

A. Game Playing Agents

1) LLM Agents: The following LLM families and versions
were initially selected for evaluation:

• GPT (OpenAI)
– o1-preview (2024-09-12)
– o1-mini (2024-09-12)
– o3-mini (2025-01-31)
– GPT-4o (2024-08-06)
– GPT-3.5-turbo (0125)

• Gemini (Google Deepmind)
– Gemini-1.5 (Pro 002)

• Claude (Anthropic)
– Sonnet-3.5 (2024-10-22)
– Haiku-3.5 (2024-10-22)

• DeepSeek
– DeepSeek-R1 (2025-01-20)
– DeepSeek-V3 (2024-12-26)

• Llama (Meta)
– Llama-3.1 (70B-Instruct)
– Llama 3.2 (3B-Instruct)

• Phi (Microsoft)
– Phi-3-medium (128k-Instruct)

• Mistral AI (Mistral)
– Mistral-0.3 (7B-Instruct)
– Mixtral-0.1 (8x7B-Instruct)

However, it became apparent during preliminary testing that
many of the smaller models were not able to correctly adhere
to the game’s specified rules and output format, resulting in
repeated invalid clues or guesses that frequently devolved into
pure random play. As such, only the nine LLMs highlighted
in bold (o1-preview, o1-mini, o3-mini, GPT-4o, Gemini-1.5,
Sonnet-3.5, DeepSeek-R1, DeepSeek-V3 and Llama-3.1) were
able to consistently follow the game’s rules. Scores for the
other LLMs were significantly worse because of this, and we
thus chose to only present our findings and analysis for these
nine higher performing LLMs.

2) Word-Vector Agents: In addition to the LLM agents
mentioned above, we also evaluated three word-vector agents
supplied with the previous Codenames AI framework:

• Word2Vec (threshold = 0.7).
• GloVe (300d)
• Combined (300d, threshold = 0.7)
These agents utilise word embedding approaches based on

learned vector semantics from a provided training corpus [15].
Word2Vec is based on a 300 dimensional pre-trained skip-
Gram model trained on the Google News corpus [38]. GloVe
(Global Vectors for Word Representation) is an alternative
approach that additionally considers the co-occurrence of
words within a defined context [39]. Combined utilises both
approaches by concatenating the Word2Vec and GloVe vectors
together [40].

One crucial limitation of these word-vector agents is that,
due to the fact that their approaches utilise a pre-defined corpus
of words for determining suitable clues / guesses, they are
unable to interpret any words which are not present in their
training set. Preliminary testing found that these agents will
often produce errors when paired with LLM teammates, which
have a much wider ranging vocabulary from which to select
clues. Because of this, we were unable to produce reliable
performance results for games with both LLM and Word-
Vector agents on the same team, and have instead chosen to
evaluate each agent group separately.

B. Game Versions
Two different versions of Codenames were utilised for our

agent evaluations, based on the previous and updated versions
of the Codenames AI framework.

1) Single Team (cooperative): Played using the same scor-
ing system as the previous Codenames AI framework, where
a single team (red codemaster/guesser) attempts to identify all
red words in as few turns as possible. Teams are awarded a
score at the end of the game based on the number of turns
taken (lower score is better). The only exception to this is if
the guesser selects all blue words or the assassin word, which
results in a maximum score of 25 points.

2) Two Teams (competitive / cooperative): Played using the
full set of rules from the original Codenames game, where two
teams (red codemaster/guesser and blue codemaster/guesser)
attempt to identify all words of their team’s colour first.
Selecting the assassin word results in an immediate win for the
other team. Guessers can also inadvertently help the opposing
team win if they accidentally select any words of their colour.
Rather than using a scoring system, this version measures
success in terms of overall win-rate.

C. LLM Agent Prompts
When an LLM agent is initialised within the Codenames AI

framework it is first provided with an input prompt describing
the game’s rules, using the same format and wording shown
in section II.A, along with its team’s colour and whether it is
playing as the codemaster or guesser (e.g., “You are playing
the game Codenames as the Red Guesser”). When required to
give a response during the game, each agent is prompted as
follows:

6

1) Codemaster: The only situation where the codemaster
needs to provide a response is when giving a clue (word and
number) based on the current board state. The codemaster is
provided with the remaining words on the board ordered by
their identity (red, blue, civilian and assassin) along with an
instruction to “provide a single word clue and number for the
guesser in the following format ('pebble',2)”. The codemaster
is also reminded that “the clue cannot be derived from or
derive one of the words on the board”, and informed that they
are to “stick to this format exactly and provide no additional
text”. If the provided clue format is invalid or violates the “no
derived words” rule, the codemaster is informed of this and
asked to respond again.

2) Guesser: The guesser has two possible situations where
they are required to give a response: selecting a word on the
board that matches the provided clue, and deciding whether
to continue guessing after a correct guess has been made.
When required to select a word for their guess, the guesser is
provided with all the remaining words on the board as well
as the codemaster’s clue (e.g., “(pebble,2)”). The guesser is
instructed to “select one of the remaining words that is most
associated with this clue”, and informed that they “must select
one of the remaining words and provide no additional text”.
When deciding whether to continue guessing, the guesser is
once again informed of the remaining words on the board
and the codemaster’s clue. The guesser is also told how many
words it has already picked this turn, and is then asked “Would
you like to keep guessing? Answer only 'yes'or 'no'”. If an
invliad response is provided in either of these cases, the
guesser is informed of this and asked to respond again.

D. Evaluation Procedure

Based on the agent and game versions described above, the
following evaluation experiments were conducted:

1) Single Team: This experiment compared the perfor-
mance of different LLM and word-vector agent combinations,
acting as both the codemaster and guesser, for the single team
version of Codenames. Due to the previously mentioned issues
with word-vector agents failing to understand clues provided
by LLM agents, these two groups of agents were evaluated
separately. In addition, due to the high usage costs currently
required to run OpenAI’s recent o1/o3 models, the o1-preview,
o1-mini and o3-mini LLMs were only evaluated when paired
with themselves. Likewise, the DeepSeek models were also
only evaluated when paired with themselves, although this was
due to imposed usage limits at the time of writing.

2) Two Teams: This experiment evaluated how different
teams of the same agent (i.e., identical models for the code-
master and guesser) performed on the new two teams version
of Codenames (i.e., the full Codenames rules). While it would
have been beneficial to compare how teams of different agents
also performed, this would have led to an exponential increase
in the number of agent combinations and associated costs.
Similar to the single team version, LLM and word-vector agent
groups were evaluated separately. We also chose to exclude the
o1 models from this experiment due to the aforementioned
high usage costs.

Each of the agent and game version combinations men-
tioned above were evaluated over 100 trials (using random
seeds 0-99 inclusive). All code utilised for this experiment,
along with full quantitative results, input prompts and output
responses, is available in the provided public code repository.
All experiments were conducted on an AMD Ryzen Thread-
ripper PRO 5955WX, with an RTX A6000 and 256GB of
RAM (although the specific hardware utilised should not have
an impact on the produced results). Due to the unpredictable
nature of the LLMs used, exact replication of our results is
likely not possible even if the same parameters are applied.
However, we have found that the general trends in our results
are consistent over multiple experiment runs.

Regarding the costs associated with replicating these exper-
iments, while the Llama models are open-source, the GPT,
Gemini and Claude models are currently only available using
a paid service offered by each provider. As of the time of
writing, the costs incurred as a result of these experiments
total approximately $538 USD for GPT (OpenAI), $141
USD for Gemini (Google Deepmind), $177 USD for Claude
(Anthropic) and $8.33 USD for DeepSeek. Please note that
this does not include the additional subscription fee required to
access the OpenAI API. The bulk of these costs was attributed
to the new o1-preview model provided by OpenAI, which cost
$288 USD alone for running 100 trials of the single team game
version. While costs for using these models are expected to
reduce over time, this can still be a prohibitively expensive re-
quirement for any students or self-funded researchers wishing
to experiment with these same models.

V. RESULTS

This section provides results for the agent evaluation exper-
iments described above.

A. Single Team Version

Summative results for experiments utilising the single team
version of Codenames are shown in Table I. Definitions for
each column are provided as follows:

• Model Pair: Defines the two models being applied, with
the former specifying the codemaster and the latter spec-
ifying the guesser (i.e., codemaster - guesser). Results for
each row were calculated from 100 individual trials.

• Mean: Mean score. Note, a team’s score is equal to the
number of turns needed to identify all red words (i.e., a
lower value is better), with the exception that selecting
the assassin word results in a score of 25 points.

• Median: Median score.
• Min: Minimum score.
• Std Dev: Standard deviation in the score.
• Loss: Percentage of games that ended in a loss. Note, for

our single team results all losses were caused by selecting
the assassin word (rather than selecting all of the blue
words).

• Mean (without loss): Mean score across all games that
did not end in a loss (i.e., games where all red words
were identified).

7

• Blue avg: Average number of blue words selected in each
game (standard deviation provided in brackets).

• Civilian avg: Average number of civilian words selected
in each game (standard deviation provided in brackets).

• Clues avg: Average clue number given by the codemaster
each turn (standard deviation provided in brackets).

• Guesses avg: Average number of guesses made by the
guesser each turn (standard deviation provided in brack-
ets).

• Stop Early: Percentage of turns where the guesser chose
to voluntarily stop guessing before reaching the clue
number provided by the codemaster.

• Stop Late: Percentage of turns where the guesser chose
to guess one word more than the clue number provided
by the codemaster.

B. Two Teams Version

Summative results for experiments utilising the two teams
version of Codenames are shown in Table II. Definitions for
each column are provided as follows:

• Model Pair: Defines the two models being applied for
each team (both codemaster and guesser), with the former
specifying the red team’s models and the latter specifying
the blue team’s models (i.e., red vs. blue). Results for
each row were calculated from 100 individual trials.

• Win-rate: Percentage of games won by the red and blue
teams respectively.

• Assassin losses: Percentage of games lost due to selecting
the assassin word, for the red and blue teams respectively.

VI. DISCUSSION

A. Quantitative Results

1) Single Team Version: Looking first at the performance
of the LLMs for the single team version of Codenames, see
Table I, we can see that the o1-preview model achieved the
best performance when paired with a matching model (i.e.,
the same base LLM for both the codemaster and guesser).
Looking at the other LLMs, the difference in performance is
not as clear, with the general trend being that model pairs with
a higher loss percentage typically received a higher average
score. This can largely be attributed to fact that a loss results
in a very high score of 25, meaning that it is often strategically
better to play it safe rather than running the risk of selecting
the assassin word (at least when averaging performance over
multiple trials).

Looking at the other statistics for each LLM, we can
make several observations about the different play styles of
each model. One major differentiating factor between the
models was their level of risk taking as both codemaster and
guesser. The riskiness of codemasters was estimated using
the Clues Avg column. Based on the average clue number
given by each codemaster, we can order the LLMs from most
to least risky (o3-mini, DeepSeek-R1, o1-mini, Sonnet-3.5,
o1-preview, DeepSeek-V3, Gemini-1.5, GPT-4o, and Llama-
3.1). This riskiness in terms of the clue number given also
heavily correlates with the percentage number of losses, with

a Spearman’s rank correlation coefficient of 0.821 between
these two columns when considering all LLM model pairs
(i.e., riskier codemasters tended to have a high percentage
number of losses, when accounting for differences in the
guesser model). The Median and Min columns also back up
these findings as these values appear generally lower for the
risky codemasters, indicating that when these models do win
that they do so in a lower number of turns. Risky codemasters
are also likely to have a higher number of Blue and Civillian
words selected.

The riskiness of guessers was estimated using a combination
of the Stop Early and Stop Late values for each model
(averaged across the different possible codemasters). A higher
Stop Early percentage should indicate a more cautious guesser,
while a higher Stop Late percentage would indicate a more
risky guesser. Note this way of measuring guesser riskiness
is not an exact science, as it also appears that some models
(such as GPT-4o) are much more likely to stick to the clue
number provided by the codemaster. Based on the general
trends of these metrics, it would appear that Gemini-1.5 and
Llama-3.1 are more likely to stop early. Models also appeared
to have a higher Stop Early percentage when paired with a
risky codemaster (e.g., Sonnet-3.5) and were much lower for
cautious codemasters (e.g., Llama-3.1). The o1-preview, o1-
mini, o3-mini, DeepSeek-R1 and DeepSeek-V3 LLMs also
had very high Stop Early percentages, although this could have
been due to the fact that they were only evaluated when paired
with themselves and are also risky codemasters. However,
both o1-preview and o1-mini also had very high Stop Late
percentages, indicating that these models are less likely to
stick to the codemaster’s clue number. Sonnet-3.5 and Llama-
3.1 did appear to have a slightly higher Stop Late percentage
than other LLMs, when accounting for different codemasters,
but this was still fairly low by comparison.

Figure 2 provides further details on how the average clue
number provided by each model (when acting as the code-
master) changes based on the turn number. From this we can
see that our previous ordering of models from most risky to
most cautious (Sonnet-3.5, Gemini-1.5, GPT-4o, and Llama-
3.1) appears to hold, although the downward trends are not
identical. Notably, Gemini-1.5 has an average first turn clue
number of 2.72 (identical to that of Sonnet-3.5) but this value
falls significantly in subsequent turns. Llama-3.1 also exhibits
a similar second turn drop in clue numbers, whereas GPT-4o
and Sonnet-3.5 appear to have a much more gradual decrease.

In contrast to the LLM agents, the word-vector agents
consistently achieved better performance when paired with
a matching partner model, resulting in a very low mean
score and a 0% loss rate. GloVe appeared to have a slightly
higher average clue number than the other models, which also
resulted in a slightly lower mean score. However, it is apparent
that the performance of these models drops significantly when
playing with a different word-vector approach (particularly
when Word2Vec is paired with GloVe). This limitation does
not appear to be present in the LLM agents, which performed
roughly equally well when paired with other LLMs.

2) Two Teams Version: Looking at the result for the two
teams version of Codenames, see Table II, we can see some

8

TABLE I
AGENT RESULTS FOR SINGLE TEAM CODENAMES VERSION

Model Pair
(codemaster - guesser)

Mean Median Min Std
Dev

Loss Mean
(without
loss)

Blue
avg(stdev)

Civilian
avg(stdev)

Clues
avg(stdev)

Guesses
avg(stdev)

Stop
Early

Stop
Late

o1-preview - o1-preview 8.41 6 4 6.53 13% 5.93 0.84 (0.83) 1.20 (1.08) 1.95 (0.69) 1.88 (0.70) 11.0% 14.2%
o1-mini - o1-mini 11.10 7 4 7.93 24% 6.71 1.74 (1.19) 1.80 (1.24) 2.09 (0.70) 1.91 (0.81) 11.6% 16.0%
o3-mini - o3-mini 9.70 6 4 7.60 19% 6.11 1.68 (1.05) 1.70 (1.23) 3.40 (1.69) 2.04 (0.95) 17.4% 0.4%

DeepSeek-R1 - DeepSeek-R1 11.24 7 4 8.11 25% 6.65 1.76 (1.28) 2.04 (1.18) 2.95 (1.09) 1.97 (0.85) 16.0% 0.0%
DeepSeek-V3 - DeepSeek-V3 10.59 8 5 6.42 16% 7.85 1.43 (1.09) 1.23 (1.04) 1.77 (0.72) 1.50 (0.52) 14.7% 0.0%

GPT-4o - GPT-4o 10.58 8 6 6.41 16% 7.83 0.96 (0.97) 1.25 (1.13) 1.51 (0.60) 1.45 (0.56) 0.0% 0.0%
GPT-4o - Gemini-1.5 9.81 8 6 5.21 10% 8.12 1.19 (1.0) 1.01 (0.88) 1.50 (0.60) 1.39 (0.56) 6.1% 0.5%
GPT-4o - Sonnet-3.5 10.50 8 6 6.20 15% 7.94 1.26 (1.16) 1.13 (0.86) 1.52 (0.61) 1.45 (0.57) 2.0% 1.6%
GPT-4o - Llama-3.1 11.17 9 5 6.43 17% 8.34 1.43 (1.25) 1.18 (0.94) 1.49 (0.60) 1.41 (0.56) 3.1% 3.8%

Gemini-1.5 - GPT-4o 10.95 8 5 6.55 17% 8.07 1.42 (1.23) 1.35 (1.14) 1.62 (0.72) 1.49 (0.64) 0.3% 0.0%
Gemini-1.5 - Gemini-1.5 10.38 8 5 6.08 14% 8.00 1.36 (1.06) 1.01 (0.88) 1.63 (0.73) 1.46 (0.62) 3.9% 0.2%
Gemini-1.5 - Sonnet-3.5 11.18 8 5 6.84 19% 7.94 1.42 (1.08) 1.15 (0.97) 1.62 (0.72) 1.51 (0.65) 2.9% 2.8%
Gemini-1.5 - Llama-3.1 11.28 9 5 6.46 17% 8.47 1.76 (1.45) 1.51 (1.10) 1.65 (0.71) 1.48 (0.63) 3.7% 1.8%

Sonnet-3.5 - GPT-4o 12.34 7 5 8.39 30% 6.91 1.94 (1.05) 1.87 (1.27) 2.04 (0.59) 1.88 (0.58) 3.7% 0.0%
Sonnet-3.5 - Gemini-1.5 10.55 8 5 6.89 18% 7.38 1.90 (1.24) 1.74 (1.06) 2.03 (0.61) 1.75 (0.64) 18.1% 0.0%
Sonnet-3.5 - Sonnet-3.5 11.01 8 5 7.55 22% 7.06 1.97 (1.15) 1.81 (1.00) 2.02 (0.60) 1.84 (0.61) 6.9% 0.6%
Sonnet-3.5 - Llama-3.1 11.31 8 5 7.20 21% 7.67 1.95 (1.34) 1.66 (1.13) 1.99 (0.61) 1.66 (0.65) 21.3% 0.5%

Llama-3.1 - GPT-4o 10.56 9 6 5.51 12% 8.59 1.13 (0.99) 0.95 (0.86) 1.34 (0.53) 1.29 (0.50) 0.3% 0%
Llama-3.1 - Gemini-1.5 10.54 9 6 5.29 11% 8.75 1.01 (0.94) 1.04 (0.93) 1.32 (0.51) 1.29 (0.48) 0.8% 0.3%
Llama-3.1 - Sonnet-3.5 10.79 9 6 5.66 13% 8.67 1.10 (0.95) 1.01 (0.99) 1.34 (0.53) 1.30 (0.50) 0.6% 1.6%
Llama-3.1 - Llama-3.1 10.18 9 6 4.66 8% 8.89 1.28 (1.10) 1.13 (1.02) 1.30 (0.51) 1.30 (0.50) 0.1% 5.7%

Word2Vec - Word2Vec 6.81 6 4 0.97 0% 6.81 0.0 (0.0) 0.0 (0.0) 1.46 (0.64) 1.46 (0.64) 0.0% 0.0%
Word2Vec - GloVe 12.35 9 5 7.14 22% 8.78 1.68 (1.78) 1.38 (1.53) 1.53 (0.65) 1.38 (0.58) 0.0% 0.0%
Word2Vec - Combined 10.64 8 5 6.72 16% 7.90 0.99 (1.48) 1.05 (1.30) 1.48 (0.64) 1.39 (0.60) 0.0% 0.0%

GloVe - Word2Vec 12.21 9 5 7.52 24% 8.17 2.03 (1.53) 1.45 (1.19) 1.74 (0.76) 1.54 (0.69) 0.0% 0.0%
GloVe - GloVe 5.24 5 4 0.79 0% 5.24 0.0 (0.0) 0.0 (0.0) 1.72 (0.75) 1.72 (0.75) 0.0% 0.0%
GloVe - Combined 5.42 5 4 0.89 0% 5.42 0.15 (0.39) 0.09 (0.29) 1.71 (0.75) 1.70 (0.75) 0.0% 0.0%

Combined - Word2Vec 11.18 8 5 7.37 21% 7.51 1.47 (1.30) 1.04 (1.07) 1.66 (0.74) 1.54 (0.69) 0.0% 0.0%
Combined - GloVe 5.86 6 4 2.18 1% 5.67 0.09 (0.32) 0.12 (0.36) 1.64 (0.73) 1.63 (0.72) 0.0% 0.0%
Combined - Combined 5.53 6 4 0.83 0% 5.53 0.0 (0.0) 0.0 (0.0) 1.63 (0.73) 1.63 (0.73) 0.0% 0.0%

TABLE II
AGENT RESULTS FOR TWO TEAMS CODENAMES VERSION

Model Pair (red vs. blue) Win-rate
(red/blue)

Assassin losses
(red/blue)

GPT-4o vs. GPT-4o 40% / 60% 13% / 19%
GPT-4o vs. Gemini-1.5 59% / 41% 16% / 13%
GPT-4o vs. Sonnet-3.5 52% / 48% 11% / 19%
GPT-4o vs. Llama-3.1 53% / 47% 14% / 9%
Gemini-1.5 vs. GPT-4o 30% / 70% 18% / 12%
Gemini-1.5 vs. Gemini-1.5 45% / 55% 17% / 13%
Gemini-1.5 vs. Sonnet-3.5 45% / 55% 13% / 20%
Gemini-1.5 vs. Llama-3.1 46% / 54% 17% / 13%
Sonnet-3.5 vs. GPT-4o 50% / 50% 16% / 20%
Sonnet-3.5 vs. Gemini-1.5 58% / 42% 24% / 13%
Sonnet-3.5 vs. Sonnet-3.5 58% / 42% 18% / 24%
Sonnet-3.5 vs. Llama-3.1 61% / 39% 16% / 15%
Llama-3.1 vs. GPT-4o 45% / 55% 8% / 21%
Llama-3.1 vs. Gemini-1.5 53% / 47% 9% / 13%
Llama-3.1 vs. Sonnet-3.5 44% / 56% 15% / 19%
Llama-3.1 vs. Llama-3.1 43% / 57% 10% / 12%
Word2Vec vs. Word2Vec 49% / 51% 0.0% / 0.0%
Word2Vec vs. GloVe 28% / 72% 0.0% / 0.0%
Word2Vec vs. Combined 34% / 66% 0.0% / 0.0%
GloVe vs.Word2Vec 79% / 21% 0.0% / 0.0%
GloVe vs. GloVe 55% / 45% 0.0% / 0.0%
GloVe vs. Combined 63% / 35% 0.0% / 0.0%
Combined vs. Word2Vec 69% / 31% 0.0% / 0.0%
Combined vs. GloVe 47% / 53% 0.0% / 0.0%
Combined vs. Combined 57% / 43% 0.0% / 0.0%

Fig. 2. Average clue number provided by each codemaster model as the turn
number increases (single team version).

interesting differences in the performance of certain LLMs
compared to the single team version. Firstly, it would appear
that riskier codemasters (e.g., sonnet-3.5) perform much better,
likely due to the reduced impact that selecting an assassin word
has on a team’s average win-rate. Looking at the overall win-
rates for both the red and blue teams, there does not appear
to be a substantial difference between each side (the red team
always goes first, but has nine words to identify compared
to blue team’s eight words). Across all trials, Sonnet-3.5 had
the highest average win-rate for the red team of 56.75%
(compared to 51.00% for GPT-4o, 41.50% for Gemini-1.5,

9

and 46.25% for Llama-3.1) while GPT-4o has the highest
overall win-rate for the blue team of 58.75% (compared to
46.25% for Gemini-1.5, 50.25% for Sonnet-3.5, and 49.25%
for Llama-3.1). The percentage of assassin losses for each
model did not appear substantially different from in the single
team version, indicating little change in terms of the overall
riskiness / cautiousness of each LLM’s strategy. For the word-
vector agents, Word2Vec was the worst performing overall
while GloVe was the best performing (same result as for the
single team version).

The observed difference in the effectiveness of different
models / playstyles between the single and two teams versions
of Codenames demonstrates some of the potential limitations
with relying on the scoring approach of the single team
version. Most notably, selecting the assassin word has a huge
impact on a team’s overall mean score for the single team
version, which results in a game that encourages cautious
play. The two team version of Codenames instead appears to
incentivise the opposite, with Sonnet-3.5 going from the worst
performing LLM for the single team version (in terms of mean
score across all games played) to the best performing LLM for
the two teams version (based on average win-rate across all
games played). This would seem to imply that playing slightly
riskier than your opponent is a smart strategy for this version,
particularly when paired against overly cautious teams.

B. Qualitative Observations

This section will discuss anecdotal findings regarding model
behaviour that was observed throughout the games played,
including several instances where it appeared the LLMs did not
fully internalise the game’s rules. We propose some possible
explanations for these behaviours, although the black box
nature of LLMs makes it difficult to verify the true cause.

1) Differences between word-vector and LLM approaches:
LLMs can give fictional word clues: We observed several
cases where the LLMs gave clues using fictional words from
pop culture. For example, during a game played on the board
shown in Figure 1, the o1-preview codemaster provided the
clue (Hogwarts, 3) on turn 1. The corresponding o1-preview
guesser then correctly selected SCHOOL, SPELL and LION
from the board. As some readers may already be aware, Hog-
warts is not a “real” word and is instead taken from the popular
Harry Potter book series. As such, it is unlikely that this clue
would be able to be interpreted by most traditional natural
language processing techniques that rely on word embedding
to see statistical associations between words. Indeed, none
of the word-vector agents tested include this word in their
provided corpus. Nonetheless, this clue strongly connects the
three words selected by the guesser and highlights the LLMs
ability to draw on cultural references as inspiration.

Word-vector clues rely on statistical similarity, while
LLM clues use context: One commonly observed issue with
word-vector approaches is that they often give clues which
seem nonsensical to human guessers. A clue such as (Perry,
2) that is intended for hinting at the words Mexico and Berry,
can be easily interpreted by an identical word-vector guesser
but which is largely uninterpretable for most human players.

Word-vector agents rely on statistical similarity to generate
clues, treating word associations as points on a sliding scale
of relatedness. For example, the word2vec model suggested
(Deer, 3) as a clue for BUCK, BEAR and ROBIN. While
BUCK is semantically cohesive with Deer, the words BEAR
and ROBIN are included because they are statistically closer to
Deer than the other unrelated words on the board. This process
makes sense mathematically, but diverges significantly from
how humans often generate and interpret clues for Codenames
[41].

Research in cognitive semantics suggests that humans tend
to group words into cohesive categories rather than relying
on statistical co-occurrence. Prototype theory highlights how
humans classify concepts based on shared, salient features;
and semantic priming studies demonstrate that categorical
or meaningful connections are processed more quickly than
weaker, statistically driven ones [42], [43]. Context depen-
dence also plays a critical role in human reasoning, as associa-
tions are often shaped by situational and cultural factors rather
than abstract statistical relationships [44]. In Codenames, hu-
man clue-givers typically prioritise clear, contextual, or seman-
tically meaningful relationships between words. For instance,
they might use Animal or Nature as clues to connect BUCK
and BEAR, because these words all belong to a shared category
(hypernyms). However, humans do not generate associations
based on abstract statistical co-occurrence because they lack
direct access to this information. Instead, their reasoning relies
on context, shared knowledge, and semantic relationships that
are intuitively interpretable.

This disconnect between word-vector approaches and
human-generated clues may stem from differences in how
humans perceive associations. Humans often expect clues
to convey a reason for the connection (whether categorical,
antonymic, or contextual) while word embeddings focus solely
on relative semantic distances in vector space. This raises im-
portant questions for future work, such as how this mismatch
in reasoning affects a user’s gameplay experience, or if LLM
codemasters can generate more semantically cohesive clues
that improve its compatibility with human teammates?

2) Models giving invalid responses: One of the risks with
using LLMs is their ability to give invalid responses when
asked to produce clues or guesses. While this happened fairly
rarely, with most invalid clues or guesses being correctly fixed
with follow up prompts, we did observe some factors that
appeared to increase the likelihood of invalid responses.

Codemasters giving invalid responses: Invalid responses
from LLM codemasters often came in the form of clue words
that contained, or were contained within, another word on the
board. For example, trying to give the clue Bonfire or Campfire
when FIRE is a word on the board would be considered an
invalid response. Due to the way that our invalid clue checker
was implemented, essentially checking for substring matches
between the provided clue and all remaining words on the
board, there is a risk for some potentially valid clues to be
incorrectly flagged as invalid. For example, the clue Education
was flagged as invalid because it contained the board word
CAT, even though most human players would argue that the
word education is not derived from the word cat and thus

10

doesn’t violate the game’s official rules. One way to address
this issue in the future would be to employ a more advanced
checker, perhaps utilising a database of compound words that
derive from the given clue, although this may not completely
fix the problem.

Guessers giving invalid responses: On the guesser’s side,
the Llama model would very occasionally fall into a loop
of making repeatedly invalid guesses by returning a response
in an invalid format. For example, when provided the clue
(Transparent, 2) Llama first tried to select the word ICE, but
this was not one of the words present on the board. When
prompted to select another word, Llama repeatedly stated
“ICE is not an option, but SNOW is somewhat transparent”
instead of responding with just the individual word being
selected. After being asked to guess again, Llama would
rephrase the same sentence, ignoring the required single word
response criteria. We suspect that because the agent sees its
previous responses within its own context window, that it is
inadvertently fine-tuning itself to give future invalid responses.
While many of the models would eventually select one of the
valid words after many repeated prompts, this is obviously not
a desirable behaviour and resulted in LLMs exceeding the 10
invalid guesses limit on several occasions.

The o1-mini guesser model would also sometimes give yes
or no as guesses when asked to select a word on the board.
This likely occurred because guesser models are also asked
after each correct guess if they would like to continue guessing
or stop for now, after which they need to respond with yes or
no. If the yes response is given, then the remaining words are
presented to the model again to make a further guess. The
o1-mini agent would sometimes respond with an additional
yes or no after already replying to this question, possibly not
realising that it was now required to make another guess.

3) Idiosyncrasies of model behaviour: During our experi-
ments, we observed several strange decisions that were repeat-
edly made by either the codemaster or guesser LLMs that neg-
atively impacted their overall performance. These idiosyncratic
behaviours appear to indicate some level of misunderstanding
with the rules of the game by the LLMs, which hinders their
strategic and epistemic reasoning capabilities.

Over emphasis on one word: Firstly, many codemaster
agents would overemphasise their clue’s connection to one
word on the board, neglecting strong connections with the
other words they intended to hint at. For example, the GPT-
4o model once gave the clue (Picnic, 2) with the remaining
team words to identify being PLATE, TRUNK, and BEACH.
While the word has strong associations with PLATE, which
was correctly guessed, connections to the other words seem
tenuous at best. This clue was also given when the incorrect
word JAM was on the board, which was picked by the guesser
after PLATE. This single word prioritisation by codemasters
was a repeatedly observed behaviour across all LLMs.

Clues closely related to the assassin: Another strange
behaviour from codemasters was vastly underestimating a
given clue’s potential association to the assassin word. Agents
would sometimes inaccurately consider the potential relation-
ship of their clue to other non-target words, which is especially
important for the assassin word. For example, the Llama

codemaster gave the clue (Spark, 2) when BOLT was the
assassin word on the board. This issue, combined with the
tendency to neglect connecting their clue to words beyond
the first, would lead guesser models to often correctly guess
the first word but then incorrectly pick the assassin word
afterwards.

Continuing to guess beyond the number given by the
codemaster: We also observed guesser models continuing to
guess even after they had selected all the words related to a
given clue, which is represented by the Stop Late percentage
in Table I. The o1-preview and o1-mini models had the highest
likelihood of this, with Stop Late percentages of 14.2% and
16% respectively. Humans playing Codenames would typically
only go over the clue number provided by the codemaster if
they can now see a connection that they previously missed. It
is rare to see human players use this extra guess to randomly
select a word, on the pure chance that it will be correct, outside
of niche situations towards the end of the game.

Most of the instances where the o1-preview and o1-mini
models decided to continue guessing were because the guesser
agent continued to find additional connections to the given
clue beyond the number suggested by the codemaster. For
example, in one game the clue (Wizard, 1) was given by the
codemaster, most likely to be associated with the remaining
word STAFF. This word was then correctly selected by the
guesser agent, who then decided to keep guessing and selected
the word HOOD. While this may seem like a sensible guess,
HOOD was actually one of the opposing teams words. In this
situation, the guesser agent may have been confused about the
rules of the game, thinking that it was just looking for words
connected to the given clue regardless of the provided number.
This misunderstanding led the agent to continue identifying
word connections and giving guesses, regardless of whether it
had already reached the number provided by the codemaster.

VII. FUTURE WORK

We see many opportunities for future research that utilises
Codenames as an experimental setting for evaluating the
capabilities of LLMs.

To assess an LLM’s ability to adapt to the opposing team’s
behaviour, researchers could prompt the guesser and code-
master agents to utilise information within the other team’s
responses as part of its own reasoning. For example, a guesser
on the red team could analyse the blue team’s prior clues
to help determine which words are most likely to be blue.
This could provide an advantage to a guesser agent, as it
reduces the sample space of words they are considering. On the
codemaster’s side, an advanced codemaster might avoid giving
clues that could be related to the opposing team’s words, in
order to reduce the risk of their guesser accidentally selecting
them (i.e., selecting a neutral word is less bad than selecting a
word for the opposing team). Choosing to leave certain target
words until later in the game can also be advantageous. For
example, if the red team has the word INDIA on the board
while blue team has the words CHINA, NAPAL and JAPAN,
then by choosing not to give a clue for INDIA until much later
in the game the red codemaster limits the potential of the blue

11

codemaster to give easy clues such as Country or Asia. It
is also possible that the blue guesser may accidentally select
INDIA when attempting to identify the other words. Focusing
on an LLMs ability to perform such reasoning may reveal
whether they can effectively take other agent’s behaviour and
circumstances into account when making strategic decisions.

Codenames also provides a rich and controlled setting to
investigate the linguistic reasoning capabilities of LLMs. We
see potential for many possible extensions of our work that
delves deeper into the specific linguistic tendencies of LLMs.
Words can be linguistically connected in many ways, such
as synonyms (happy, joyful), antonyms (hot, cold), hyponyms
(dog to animal) and hypernyms (vehicle to car). Investigating
the ways in which LLM codemasters tend to relate words, and
also how successfully guesser agents can connect words using
the provided clue, may lead to better ways of communicating
with LLM agents in other settings.

Additional experiments could provide further comparisons
on how different techniques (including both LLM and word-
vector approaches) can be most effectively combined. For
example, while the current word-vector agents cannot reliably
act as guesser when paired with an LLM, due to their inability
to interpret words outside of their provided corpus, they can
still operate as Codemaster alongside an LLM guesser. Such
a comparison could help to indicate if any of the word-vector
approaches provide clues that are more human interpretable,
as LLMs have previously been shown to work well at collab-
orating alongside human players [28].

The type of words on the board is another factor that can be
controlled and varied for different agents. Custom word-pools
can be developed to test an LLM’s ability to make linguistic
connections. For example, we could create a board where all
words are very closely related to the assassin word, which is
intended to evaluate an agent’s ability to distinguish between
heavily related words. Boards with words that are fictional
or related to a specific topic could also be used to test an
agent’s ability to relate specific cultural references. Broadening
beyond words, Codenames also has a picture-based version,
where 25 picture cards replace the 25 words on the board. This
version could be used to test the multimodal reasoning of LLM
agents equipped with image understanding capabilities. To
further extend this, we could also experiment with multimodal
agents giving clues in the form of generated images.

In addition to Codenames, many other language-based
boardgames could also be explored in future studies to help
verify if our LLM performance and behavioural findings are
specific only to codenames or are more general. Some example
games that could be investigated further include “So Clover”,
‘Just One”, “Letter Jam”, “Decrypto”, “Medium” and “Master
Word”. If LLM agents can be developed with a high level
of competence in these language-based games, we may also
be able to extract explainable strategies by studying their
gameplay. This approach is already being taken in other AI
dominated games such as Go, Chess and Dota 2 [45].

VIII. CONCLUSION

In this paper we have explored the potential of the game of
Codenames as a suitable benchmark for assessing the language

reasoning capabilities of multiple LLM agents, as well as their
strategic tendencies within the game. We did this by having
different LLMs play both the single team and two team version
of Codenames, alongside a variety of different teammates
and opponents. We found that each LLM exhibits a unique
emergent style of play and that they do not necessarily perform
best when paired together. In fact, each LLM often performs
better in a specific role (either as codemaster or guesser).
We found that a cautious playstyle often resulted in high
performance for the single team version, with the exception of
the new o1-preview model which was able to achieve superior
performance over all other LLMs despite exhibiting a more
risky strategy. For the two teams version the opposite appeared
to be the case, where playing risky often led to a higher
average win-rate against a more cautious opponent. We also
discuss why LLM agents are more suitable for human play
than previous word-vector approaches, observed idiosyncrasies
in model behaviour, and the rich potential for future work in
LLM research utilising Codenames.

REFERENCES

[1] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R.
Wen, “A survey of large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2303.18223

[2] D. Yang, E. Kleinman, and C. Harteveld, “Gpt for games:
A scoping review (2020-2023),” in 2024 IEEE Conference on
Games (CoG). IEEE, Aug. 2024, p. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/CoG60054.2024.10645548

[3] G. Todd, S. Earle, M. U. Nasir, M. C. Green, and J. Togelius, “Level
generation through large language models,” in Proceedings of the
18th International Conference on the Foundations of Digital Games.
Association for Computing Machinery, 2023.

[4] S. Oh, I. Chung, and K.-J. Kim, “Langbirds: An agent for angry birds
using a large language model,” in 2024 IEEE Conference on Games
(CoG), 2024, pp. 1–8.

[5] D. Jeurissen, D. Perez-Liebana, J. Gow, D. Cakmak, and J. Kwan,
“Playing nethack with llms: Potential & limitations as zero-shot
agents,” 2024. [Online]. Available: https://arxiv.org/abs/2403.00690

[6] M. Ciolino, D. Noever, and J. Kalin, “The go transformer: Natural
language modeling for game play,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.03500

[7] M. Kim and S. Kim, “Generative ai in mafia-like game simulation,”
2023. [Online]. Available: https://arxiv.org/abs/2309.11672

[8] B. Bateni and J. Whitehead, “Language-driven play: Large language
models as game-playing agents in slay the spire,” in Proceedings of the
19th International Conference on the Foundations of Digital Games, ser.
FDG ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3649921.3650013

[9] A. Costarelli, M. Allen, R. Hauksson, G. Sodunke, S. Hariharan,
C. Cheng, W. Li, J. Clymer, and A. Yadav, “Gamebench: Evaluating
strategic reasoning abilities of llm agents,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.06613

[10] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play,” Science, vol. 362, no.
6419, pp. 1140–1144, 2018.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature, vol.
550, no. 7676, pp. 354–359, Oct. 2017.

[12] R. D. Gaina and M. Balla, “TAG: Pandemic Competition,” in 2022 IEEE
Conference on Games (CoG), 2022, pp. 552–559.

[13] V. Chvátil, Codenames. Czech Games Edition, 2015.
[14] A. Summerville, A. Kim, M. Ruzmaykin, and A. Truong,

“The codenames ai competition,” https://sites.google.com/view/
the-codenames-ai-competition, accessed: 2024-11-25.

https://arxiv.org/abs/2303.18223
http://dx.doi.org/10.1109/CoG60054.2024.10645548
https://arxiv.org/abs/2403.00690
https://arxiv.org/abs/2007.03500
https://arxiv.org/abs/2309.11672
https://doi.org/10.1145/3649921.3650013
https://arxiv.org/abs/2406.06613
https://sites.google.com/view/the-codenames-ai-competition
https://sites.google.com/view/the-codenames-ai-competition

12

[15] A. Kim, M. Ruzmaykin, A. Truong, and A. Summerville, “Cooperation
and Codenames: Understanding Natural Language Processing via Code-
names,” Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 15, no. 1, pp. 160–166, 2019.

[16] M. Kosinski, “Theory of mind may have spontaneously emerged in large
language models,” arXiv preprint arXiv:2302.02083, 2023.

[17] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,”
arXiv preprint arXiv:2009.03300, 2020.

[18] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “Hel-
laswag: Can a machine really finish your sentence?” arXiv preprint
arXiv:1905.07830, 2019.

[19] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung,
A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou et al., “Challenging
big-bench tasks and whether chain-of-thought can solve them,” arXiv
preprint arXiv:2210.09261, 2022.

[20] J. Huang and K. C.-C. Chang, “Towards reasoning in large language
models: A survey,” arXiv preprint arXiv:2212.10403, 2022.

[21] Y. Zhang, S. Mao, T. Ge, X. Wang, A. de Wynter, Y. Xia, W. Wu,
T. Song, M. Lan, and F. Wei, “Llm as a mastermind: A survey
of strategic reasoning with large language models,” arXiv preprint
arXiv:2404.01230, 2024.

[22] J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Niko-
laev, and J. Palomaki, “Tydi qa: A benchmark for information-seeking
question answering in typologically diverse languages,” Transactions
of the Association for Computational Linguistics, vol. 8, pp. 454–470,
2020.

[23] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang,
D. Song, and J. Steinhardt, “Measuring mathematical problem solving
with the math dataset,” arXiv preprint arXiv:2103.03874, 2021.

[24] M. Sap, R. LeBras, D. Fried, and Y. Choi, “Neural theory-of-mind?
on the limits of social intelligence in large lms,” arXiv preprint
arXiv:2210.13312, 2022.

[25] T. Ullman, “Large Language Models Fail on Trivial Alterations to
Theory-of-Mind Tasks,” Mar. 2023.

[26] M. Sidji and M. Stephenson, “Prompt Engineering ChatGPT for Co-
denames,” in 2024 IEEE Conference on Games (CoG), Aug. 2024, pp.
1–4.

[27] K. Gandhi, D. Sadigh, and N. D. Goodman, “Strategic reasoning with
language models,” ArXiv, vol. abs/2305.19165, 2023.

[28] M. Sidji, W. Smith, and M. J. Rogerson, “Human-AI Collaboration
in Cooperative Games: A Study of Playing Codenames with an LLM
Assistant,” Proceedings of the ACM on Human-Computer Interaction,
vol. 8, no. CHI PLAY, pp. 1–25, Oct. 2024.

[29] W. Street, J. O. Siy, G. Keeling, A. Baranes, B. Barnett, M. McKibben,
T. Kanyere, A. Lentz, B. A. y Arcas, and R. I. M. Dunbar, “LLMs
achieve adult human performance on higher-order theory of mind tasks,”
May 2024.

[30] C. Jaramillo, M. Charity, R. Canaan, and J. Togelius, “Word autobots:
Using transformers for word association in the game codenames,”
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, pp. 231–237, Oct. 2020.

[31] D. Koyyalagunta, A. Sun, R. L. Draelos, and C. Rudin, “Playing
Codenames with Language Graphs and Word Embeddings,” Journal of
Artificial Intelligence Research, vol. 71, pp. 319–346, 2021.

[32] C. Archibald and S. Brosnahan, “Adapting to teammates in a cooperative
language game,” arXiv, 2024.

[33] C. Archibald and D. Blaylock, “Noisy communication modeling for
improved cooperation in codenames,” in 2024 IEEE Conference on
Games (CoG), 2024, pp. 1–8.

[34] B. Ozturkler, N. Malkin, Z. Wang, and N. Jojic, “ThinkSum: Probabilis-
tic reasoning over sets using large language models,” in Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2023, pp. 1216–1239.

[35] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
Language Models are Zero-Shot Reasoners,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 22 199–22 213, 2022-12-06.

[36] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, S. Gupta, B. P. Majumder,
K. Hermann, S. Welleck, A. Yazdanbakhsh, and P. Clark, “Self-Refine:
Iterative Refinement with Self-Feedback,” Advances in Neural Informa-
tion Processing Systems, vol. 36, pp. 46 534–46 594, 2023.

[37] Z. Wang, S. Mao, W. Wu, T. Ge, F. Wei, and H. Ji, “Unleashing
the Emergent Cognitive Synergy in Large Language Models: A Task-
Solving Agent through Multi-Persona Self-Collaboration,” arXiv, 2024.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available:
https://arxiv.org/abs/1301.3781

[39] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
A. Moschitti, B. Pang, and W. Daelemans, Eds. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543.
[Online]. Available: https://aclanthology.org/D14-1162

[40] A. Rücklé, S. Eger, M. Peyrard, and I. Gurevych, “Concatenated
power mean word embeddings as universal cross-lingual sentence
representations,” 2018. [Online]. Available: https://arxiv.org/abs/1803.
01400

[41] M. Sidji, W. Smith, and M. J. Rogerson, “Human-ai collaboration
in cooperative games: A study of playing codenames with an llm
assistant,” Proc. ACM Hum.-Comput. Interact., vol. 8, no. CHI PLAY,
Oct. 2024. [Online]. Available: https://doi.org/10.1145/3677081

[42] J. H. Neely, “Semantic Priming Effects In Visual Word Recognition: A
Selective Review Of Current Findings And Theories,” in Basic Processes
in Reading. Routledge, 1990.

[43] R. E. MacLaury, “Prototypes Revisited,” Annual Review of Anthropol-
ogy, vol. 20, pp. 55–74, 1991.

[44] L. W. Barsalou, “Context-independent and context-dependent informa-
tion in concepts,” Memory & Cognition, vol. 10, no. 1, pp. 82–93, Jan.
1982.

[45] M. Shin, J. Kim, and M. Kim, “Human Learning from Artificial Intel-
ligence: Evidence from Human Go Players’ Decisions after AlphaGo,”
Proceedings of the Annual Meeting of the Cognitive Science Society,
vol. 43, no. 43, 2021.

Matthew Stephenson Dr. Matthew Stephenson is a
Lecturer with the College of Science and Engineer-
ing at Flinders University in South Australia. His
research focusses on applying Artificial Intelligence,
Machine Learning and Data Science techniques to
games. This includes designing AI to play, create
and analyse games; as well as utilising games as
a testbed for developing AI-based solutions to real-
world problems.

Matthew Sidji Matthew Sidji is a final year PhD
candidate with the School of Computing and In-
formation Systems at The University of Melbourne
in Victoria. His research focusses on AI’s affect
on human teaming and cognition in cooperative
games. His work involves investigating human play
practices and developing cooperative AI agents for
games.

Benoı̂t Ronval Benoı̂t Ronval is a PhD student
with the Institute of Information and Communication
Technologies, Electronics and Applied Mathematics
(ICTEAM) at UCLouvain in Belgium. His research
centers on generating synthetic tabular data and its
integration with LLMs. He specializes in designing
generative models and investigating the applications
of synthetic data in machine learning.

https://arxiv.org/abs/1301.3781
https://aclanthology.org/D14-1162
https://arxiv.org/abs/1803.01400
https://arxiv.org/abs/1803.01400
https://doi.org/10.1145/3677081

	Introduction
	Codenames AI Framework
	Codenames Rules
	Overview
	Setup
	Turns
	Ending

	Differences from Previous Framework
	Framework Limitations

	Related Work
	Benchmarks for LLMs
	Reasoning Skills in Codenames
	Codenames AI

	Experiments
	Game Playing Agents
	LLM Agents
	Word-Vector Agents

	Game Versions
	Single Team (cooperative)
	Two Teams (competitive / cooperative)

	LLM Agent Prompts
	Codemaster
	Guesser

	Evaluation Procedure
	Single Team
	Two Teams

	Results
	Single Team Version
	Two Teams Version

	Discussion
	Quantitative Results
	Single Team Version
	Two Teams Version

	Qualitative Observations
	Differences between word-vector and LLM approaches
	Models giving invalid responses
	Idiosyncrasies of model behaviour

	Future work
	Conclusion
	References
	Biographies
	Matthew Stephenson
	Matthew Sidji
	Benoît Ronval

